Graph Clustering
$$Cut(V, V_{z}) = 2 = 1 + 1$$

V. V_{z}
 $G = (V, E, A)$, $A \in \mathbb{R}^{n \times n}$, $|V| = n$
weighted adjocency matrix of the grap h
 $A_{ij} = \int_{-\infty}^{\infty} w_{i}$, $(i, j) \in E$
 O , otherwise
Coal of graph clustering:
Partition V into E clusters of nodes/vectrics
For example, $k = 2$
 $V = V, UV_{z}$, $V_{1} \cap V_{z} = \emptyset$
Graphic arrive in mony different applications: social networks
web data, image aggregation , circuit partitioning
 $Cut(V, V_{z}) = \sum_{V \in V_{i}}^{\infty} A_{ij}$
 $V_{i} \in V_{i}$
Can tree to minimize Cut (V, V_{z}) .
Just minimizing Cut (V, V_{z}) does not work well
because it leads to extremely unbalanced clusters
On classical way of entrening balance :
 $\sum_{V \in V_{i}}^{\infty} Gut(V_{i}, V_{z})$
 $V_{i} = (V_{i}| = |V_{z})$
Kenighan Un heavistic : Sharte with some partitioning V.8%
cut that $|V_{i}| = |V_{z})$.

$$RC(G) = \underbrace{\sum_{k=1}^{k}}_{k=1} \underbrace{Cut(V, V-V_k)}_{|V_k|} = \underbrace{\sum_{k=1}^{k}}_{dig} \underbrace{dig}(V_k) - linhe(V_k, V)}_{|V_k|}$$

$$= \underbrace{\sum_{k=1}^{k}}_{|V_k|} \underbrace{\frac{1}{|V_k|}}_{|V_k|} = \underbrace{\sum_{k=1}^{k}}_{|V_k|} \underbrace{\frac{1}{|V_k|}}_{|V_k|}$$

$$= \underbrace{\sum_{k=1}^{k}}_{|V_k|} \underbrace{\frac{1}{|V_k|}}_{|V_k|} = \underbrace{\sum_{k=1}^{k}}_{|V_k|} \underbrace{\frac{1}{|V_k|}}_{|V_k|}$$
where $L = D-A$ is called the Grouph Laplacian
$$L$$
 has various properties:
$$E = \inf_{j=1}^{k} \underbrace{\lim_{k=1}^{k}}_{|V_k|} = \lim_{k=1}^{k} \underbrace{\lim_{k=1}^{k}}_{|V_k|}$$

$$E = \inf_{j=1}^{k} \underbrace{\lim_{k=1}^{k}}_{|V_k|} = \lim_{k=1}^{k} \underbrace{\lim_{k=1}^{k}}_{|V_k|} = \lim_{k=1}^{k} \underbrace{\lim_{k=1}^{k}}_{|V_k|}$$

$$E = \inf_{j=1}^{k} \underbrace{\lim_{k=1}^{k}}_{|V_k|} = \lim_{k=1}^{k} \underbrace{\lim_{k=1}^{k}}_{|V_k|} = \lim$$